
October 1990 UILU-ENG-90-2250
ACT-114

Applied Computation Theory

OTIC
CTE
.419,90

AD-A228 740 Cb TIFEOTIC FILE Copy

AN O(LOG N) TIME
COMMON CRCW
PRAM ALGORITHM FOR
MINIMUM SPANNING TREE

Michael M. Wu

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited. 90 1 13 0 7 7

UNCLASSIFIED
iCURIT' CLASSIATION Op THIS PAGE

REPORT DOCUMENTATION PAGE
a. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None
I. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION IAVAILABILITY OF REPORT

Approved fo.r public release;
b. DECL.ASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited

i PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-90-2250 (ACT #114)

&a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Coordinated Science Lab (if pOkable) Office of Naval Research
University of lllinois N/A

As$$ (G" State, a zpco*) b. ADDRESS (M~ State. and ZIP COd)
1101 W. Springfield Ave. Arlington, VA 22217Urbana, IL 61801

Be. NAME OF FUNDING /SPONSORING jSb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Office of Naval (i Olkcalble) N00014-85-K-0570
Research

SC. AOORESS (Cty, Stat &ed Z1PCode) 10. SOURCE OF FUNDING NUMBERS
Arlington, VA 22217 PROGRAM PROJECT TASK IWORK UNIT

ELEMENT NO. NO. NO. r SSON NO.

t1. TITLE (Imh4 5.cwhy Cwfltlen)
An O(log n) Time Common CRCW PRAM Algorithm for Minimum Spanning Tree

12. PERSONAL AUTHOR(S)
Wu, Michael M.

13F. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (YON, AMotr Dajy) IS. PAGE COUNT
Technical FROM TO October, 1990 10

16. SUPPLEMENTARY NOTATION

17. COSATI COOlS lB. SUIIJEC TERMS ICr.;w on sven if necesmay and 4111t byock numberFIELD GROUP ISU-arale - lgorithms, minimum spanning tree, CRCW PRAM

19. AISTPACT (Co.nVnu on ,vwwS if necew and *ntk by ho nube) "

We present an algorithm for finding the minimum spanning tree of a graph with n vertices and
m edges on a Common CRCW PRAM using m+n l +2c processors and O(m+n +) space in O(iog n)time, where c is a constant such that 0 < c < 1/2.

20. OISTRIBUTION/AVAILA&IUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
(UNCLASSIFIEDUNLIMITED C3 SAME AS RPT. C0 DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Incude Area Co) Z2€. OFFICE SYMBOL

00 Form 1473. JUN 6 Preious tlofm are o b04e. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

An O(log n) Time Common CRCW PRAM

Algorithm for Minimum Spanning Tree

Michael M. Wu

Department of Electrical and Computer Engineering
and

Beckman Institute
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801, U.SA.

17 October 1989

Abstract

We present an algorithm for finding the minimum spanning tree of a graph with n vertices and
m edges on a Common CRCW PRAM using 2m +n 1+26 processors and O(m +n 1+) space in O(log n)
time, where e is a constant such that 0 < e < 1/2.

AcCesiFor

Keywords: parallel algorithms, minimum spanning tree, CRCW PRAM NTIS CRA&I"[WK: TAB
Ullannounced

Justitfcalion

By
j, . , Distribution I

Availability Codes

O Avil and or
Special

Supported by the Office of Naval Research under Contract N00014-85-K-0570.

1. INTRODUCTION

Let G = (VE) be a connected graph with a set of vertices V and a set of edges E in which each

edge e has a weight w(e). Without loss of generality, assume that the edge weights are distincL

Hence the minimum spanning tree (MST) of G is unique. Let n =IV I and m = IE I. We present an

algorithm for finding the MST of G on a Common CRCW PRAM using 2m + n 1+2 processors and

O(m+n'1) space in O(log n) time, where e is a constant such that 0 < e < 1/2.
-. -l -b1

Theb probem- i i;h'im~- t problem of combinatorial optimization. Some practical appli-

cations of MST's include the design of computer, communication, and transportation networks. Gra-

ham and HelltI gave an extensive history of the MST problem.

Yao -4 and Cheriton and Tajan-{4 designed sequential MST algorithms that ran in time

O(m log log n). Fredman and Tarjan [9] gave an improved algorithm which ran in time O(m P3(m ,n)),)
where P3(m ,n= min (i I log()n < }-). If m -_ n, then f(m,n) log*n. Gallager et al. [10]

n

presefted a distributed MST algorithm which used at most 5n logn + 2m messages and O(n log n)

time. Awerbuch +p4resented an optimal distributed MST algorithm that required O(m +n log n) mes-

sages and O(n) time.)

There have also been several parallel MST algorithms. Chin et al. [51 presented an efficient

algorithm for the CREW PRAM which ran in time O(1 using 0 processors. Hirschberg

[12] gave an algorithm for the Co[giaon (cw PRAM which ran in time O(log n) using n3 proces-

sors. Aweih *lid Shiloach [2] designed an algorithm for the Priority CRCW PRAM which ran in

tinp.1(log n) using m +n processors and O(m +n) space.
In this paper, we employ some of the results of Fich et al. [7] and modi l'a-odthm ",to

obtain a Common CRCW PRAM MST algorithm.-A straightforward modification yields an algorithm

that runs in time O(log n) using mn + n1+ procesors. We then reduce the number of processors to

2

2m + n +2. The amount of space used by our algorithm is O(m -n l-). Our algorithm has the same

running time as the algorithm of [12] and uses fewer processors. For mildly dense graphs, where

m = Ql(n +2), our algorithm has the same performance as the algorithm of [2] and uses a weaker

CRCW PRAM model. Boppana [3] and Fich, et al. [81 established that the time separation between

the Priority PRAM and the Common PRAM each with p processors is e C logp"

In Section 2, we describe the model of computation. In Section 3, we review the MST algorithm

of [2]. In Section 4, we present the results of [7] that apply to our algorithm. In Section 5, we

describe the modification of the algorithm of [2] to obtain our Common CRCW PRAM algorithm.

2. MODEL OF COMPUTATION

A CRCW PRAM consists of a set of processors and a shared memory. Each step consists of

three phases. In the first phase, each processor may read one shared memory cill. In the second

phase, each processor may perform local computations. In the third phase, each processor may write

into one shared memory cell. Any number of processors may simultaneously read from a memory

cell. If more than one processor simultaneously writes into the same memory cell, then the value that

is written depends on the model.

Two CRCW models are the Priority model and the Common model. In the Priority model, each

processor is assigned a unique priority. If more than one processor tries to write into the same cell,

then the processor with the highest priority is the one that succeeds. In the Common model, if more

than one processor tries to write into the same cell, then all the processors must write the same value.

3. THE MST ALGORITHM OF AWERBUCH AVN-D SHILOACH

The algorithm of Awerbuch and Shiloach [2] uses a Priority CRCW PRAM. The priority of each

processor is determined by its index. The smaller the index, then the higher its priority. The algo-

rithm assigns processors to edges such that the smaller the weight of an edge, the higher the priority of

3

the corresponding processor. The assignment can be made by sorting the edges by weight and then

assigning processors in order. This can be done in O(log n) time using the parallel merge sort algo-

rithm of Cole [6]. Let p (i j) be the processor assigned to edge (i ,j).

A rooted tree is a tree whose edges are directed toward the root. A star is a rooted tree with

height 1. Assume the vertices of G are numbered from 1 to n. The number of a vertex is its id. In

the algorithm, there are variables associated with each vertex i. We will use the name of a vertex to

refer to a variable associated with that vertex. The processors that operate on these variabies, however,

correspond to edges.

Each vertex i has a parent P(i), which is either another vertex or itself. If a vertex is a root,

then its parent is itself. The parent-child relation defines a directed graph called the parent's graph,

PG. PG has the same vertices as G. Define GP(i) = P(P(i)), and call GP(i) the gra, iparent of i.

IThe algorithm maintains a set T of undirected edges which always forms a forest of the MST.

I The algorithm adds edges to T using the property that for any subset of vertices, the edge of least

weight leaving the set must belong to the MST. T grows until it becomes the MST.

SThe algorithm maintains the invariant that after each iteration, for each directed tree in PG, there

is a subtree in T spanning the same set of vertices. The algorithm finds edges of the MST by trying to

hook stars to other trees in PG. Processors that correspond to edges leaving a star try to hook the star

Ito a tree. Edges that correspond to successful processors are added to T. After the stars are hooked,

the algorithm reduces the height of each tree with a shortcut operation, where each vertex takes its

grandparent to be its new parent.

T(e) is a boolean variable attached to each edge e. T(e) is initially 0. During the algorithm, if

edge e is added to the T, then T(e) is set to 1. WINNER(i) contains the name of the edge

corresponding to the writing processor. After the initialization, the algorithm iterates three steps until

all the vertices are in the same star. The algorithm is executed in parallel by each edge processor

I

4

p (ij).

Priority CRCW PRAM Algorithm

Initialization:
T(e) := 0 for all e E -

P(i):=ifori=1, ..- ,n

repeat

Step 1: (Star hooking)
If i belongs to a star and P (i) * P (j) then

P (P (i)) := P (j) and WINNER(P (i)) := (ij)
If WTNNER(P (i)) = (ij) then T (ij) := 1

Step 2: (Cycle breaking)
If i <P(i) and i = GP(i) then P(i) :=i

Step 3: (Shortcut operation)
P (i) := GP (i)

until every vertex i belongs to the same star

Step 1 performs the hooking operation. Processors that correspond to edges leaving a star try to

hook the star to another tree. A star is hooked to a tree by assigning the root of the star a parent that

is a vertex of the tree to which the star is being hooked. If more than one processor tries to hook the

star, then the processor with the highest priority succeeds. WINNER(i) contains the name of the edge

e corresponding to the writing processor. Since edge e belongs to the MST, the algorithm sets T(e)

:i 1. After Step 1, every star is hooked to some tree.

Step 2 eliminates any cycles that may have been formed in the parent's graph. A cycle of length

two forms when an edge's endpoints belong to two different stars and the edge is the edge of least

weight leaving both stars. To break a cycle, the algorithm changes the parent pointer of the vertex

with the sma'ler id to point to itself.

Step 3 performs the shortcut operation. For each vertex i, the algorithm sets the grandparent of i

to be the new parent of i. Note that if more than one processor updates P (i), then the processors per-

form a common write operation. The height of each tree that is not a star decreases a factor of at least

I

5

3/2.

A vertex determines whether it belongs to a star by using Procedure Star-Check. At the termina-

tion of StarCheck, if ST(i) is true (false), then i belongs (does not belong) to a star.

Procedure Star Check

ST (i) := true
If P (i) * GP (i) then ST(i) := false and ST(GP (i)) := false
ST(i) := ST(P(i))

Awerbuch and Shiloach [21 established the correctness of their algorithm. We briefly justify the

running time. Consider each iteration of the three steps. Steps 1 and 2 ensure that every star is

hooked to some tree to yield a new tree with height greater than one. Since Step 3 reduces the height

of every tree with height greater than one by a factor of at least 3/2, the sum of the heights of all the

trees present at the start of the iteration is reduced by a factor of at least 3/2. Thus O(log n) iterations

yield a single star. Since each iteration takes O(1) time, the algorithm runs in time O(log n).

4. r-COLOR MINIMIZATION PROBLEM

We obtain a Common CRCW PRAM MST algorithm by modifying the implementation of Step 1

of the algorithm of Awerbuch and Shiloach. Only Step I uses a priority write operation. In our algo-

rithm, we avoid the priority write by determining the processor of highest priority wanting to write to

each memory cell and having only those processors write. It can be seen that the values written in the

memory cells are the same as those that would have been written in the Priority CRCW PRAM model.

To determine the processor of highest priority writing to each cell, we solve a special case of the

r -color minimization problem described in Fich et al. [7].

r-Color Minimization Problem

Before: Each processor pi, i = 1, . .. , p, has a color xi , 0< xi < r , known only to itself. xi
represents the cell pi wants to write, if any, and 0 otherwise.

After Each processor pi knows the value ai , where ai = 1 if and only if pi is the processor of
lowest index writing to the ccll represented by xi.

6

For our algorithm, we consider the case where r = 1. Fich et al. showed that on a Common

CRCW PRAM with k memory cells the 1-color minimization problem can be solved in 0 log p 1

steps. In our discussion, we present a simplified variation of their method and show how the problem

can be solved in 0 og steps.

Let M1, • • •, Mt be the k memory cells. Assume without loss of generality that k < p', where

e is a consant such that 0 < e < 1/2. If k > p 12 then only the first p 1/2 cells are needed to achieve

0(1) steps.

The algorithm iterates the following steps. Processor pi, i = 1, , k, writes 0 into Mi . The

processors are then divided into k groups of nearly equal size, where each group is a set of consecu-

tively numbered processors. The first p mod k groups contain [.] processors, and the remaining

groups contain k processors. A processor pi in the jth group, 1 < j < k, writes I into Mj if and

only if xi = 1.

The winner is the processor of smallest index with xi = 1. Thus the winner is in the group

corresponding to the Mj of smallest index containing 1. The algorithm determincs the winning group

by using the subroutine Leftmost One.

Leftmost One

Before: Cells Mi , i = 1, , keach contain 0 or 1.

After. Mi contains I if and only if all Mj for j < i were initially 0, and Mi was initially 1.

The Leftmost One algorithm compares all pairs of cells Mi and Mj, 1 < i,j < k. If j < i and

Mi and Mj both contain 1, then the algorithm writes 0 into Mi. The algorithm requires k2 _< p proces-

sors. After applying the Leftmost One subroutine, processors in group j read Mj. A group deter-

7

mines it is the winning group if its processors read a 1.

All processors that are not in the winning group set ai := 0 and stop. The processors in the win-

ning group then repeat the 1-color minimization algorithm. This process repeats until the winning

group contains only one processor, the winner.

Each iteration of the 1-color minimization algorithm reduces the number of processors that may

be the winner by a factor of k. Thus the winner is determined in at most 1logk P1 iterations. Since

each iteration takes O(1) steps, the winner is determined in 0 It steps.

5. COMMON CRCW PRAM MST ALGORITHM

I Our Common CRCW PRAM MST algorithm is the same as the Priority CRCW PRAM algo-

rithm of Awerbuch and Shiloach except that Step 1 is modified to eliminate the priority concurrent

write., Thus we describe the modified implementation of Step I only.

In Step 1 of the Priority algorithm, if more than one processor tries to hook a star with root i to

a tree, then a priority write of the variable P(i) occurs. Since there is a P(i) for each vertex i, there

are n cells into which processors may write. The P(i)'s are written by processors performing the

hooking operation. Since processors performing the hooking operation correspond to edges leaving

stars, as many as m processors may want to write into one P (i).

In the Common algorithm, we first determine the processor of highest priority writing to each

P(i) and then have only that processor write. We begin with the direct implementation which requires

solving the r -color minimization problem with m processors and n colors.

To maintiin the O(log n) running time of the MST algorithm, Step I must run in time O(1). In

I Step 1, the Common PRAM algorithm simultaneously solves n 1-color minimization problems, one for

each P(i), using the algorithm of Section 4. Each problem requires ne cells and n2 processors to

obtain an O(1) time solution. During the first iteration, m processors are divided into nr groups.I

II

During each iteration, a processor can determine the group to which it belongs since it knows its rank

from the sort performed during the initialization phase. Each iteration reduces the number of contend-

ing processors by a factor of np, and thus 0 log n1 = O(1) iterations suffice. Since there are n

problems, Step I requires a total of mn+n 1+2e processors and nl cells. We now show how to reduce

the number of processors.

In Step I of the Priority algorithm, each processor corresponding to an edge leaving a star writes

to exactly one P (i). Thus in the Common algorithm, each processor wanting to write is a possible

winner for only one of the n 1-color minimization problems.

The absence of non-writing processors from the groups of processors formed during the solution

of the 1-color minimization problem does not affect the outcome since the processors would not have

written even if they were present. Thus each processor that wants to write needs only to participate in

the solution of the 1-color minimization problem corresponding to the P (i) it wants to write. Hence,

for the n 1-color minimization problems, the algorithm requires a total of m+n 1 +2 processors.

The remaining steps of the algorithm require 2m+n processors and O(m+n) space. Thus we

have a Common CRCW PRAM algorithm for the MST problem that runs in time O(log n) using

2m+n l 2 processors and O(m+nl+c) space. For graphs that are not connected, the algorithm can be

easily modified to find a minimum weight spanning forest, and thus the connected components.

ACKNOWLEDGMENT

The author would like to thank Michael C. Loui for his helpful comments.I
I
I

9

REFERENCES

[I] B. Awerbuch, Optimal Distributed Algorithms for Minimum Weight Spanning Tree, Counting,
Leader Election and related problems, Proc. 19th Annual ACM Symp. on Theory of Computing,

[2] B. Awerbuch and Y. Shiloach, New Connectivity and MSF Algorithms for Shuffle-Exchange
Network and PRAM, IEEE Trans. Computers, 36 (1987), 1258-1263.

[3] R.B. Boppana, Optimal Separations Between Concurrent-Write Parallel Machines, Proc. 21st
Annual ACM Symp. on Theory of Computing, (1989), 320-326.

[4] D. Cheriton and R.E. Tarjan, Finding Minimum Spanning Trees, SIAM J. Comp., 5 (1976), 724-
742.

[5] F.Y. Chin, J. Lain, and I. Chen, Efficient Parallel Algorithms for some Graph Problems, Comm.
ACM, 25 (1982), 659-665.

[6] R. Cole, Parallel Merge Sort, SIAM J. Comp., 17 (1988), 770-785.

[7] F.E. Fich, P. Ragde, and A. Wigderson, Relations Between Concurrent-Write Models of Parallel
Computation, SIAM J. Comp., 17 (1988), 606-627.

[8] F E. Fich, P. Ragde, and A. Wigderson, Simulations Among Concurrent-Write PRAMs Algorith-
mica, 3 (1988), 43-51.

[9] M.L. Fredman, and R.E. Tarjan, Fibonacci Heaps and Their Uses in Improved Network Optimi-
zation Algorithms, J. ACM, 34 (1987), 596-615.

[10] R. Gallager, P. Humblet, and P. Spira, A Distributed Algorithm for Minimum-Weight Spanning
Trees, ACM Trans. on Programming Languages and Systems, 5 (1983), 66-77.

[11] R.L. Graham, and P. Hell, On the History of the Minimum Spanning Tree Problem, Annals of
the History of Computing, 7 (1985), 43-57.

[12] D.S. Hirschberg, Parallel Graph Algorithms Without Memory Conflicts, Proc. 20th Annual Aller-
ton Conf on Communications, Control, and Computing, (1982), 257-263.

[13] A.C. Yao, An O(IE I log log IV I) Algorithm for Finding Minimum Spanning Trees, Info. Proc.
Letters, 4 (1975), 21-23.

